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ABSTRACT: This paper shows that a small modification of the Hardy-Weinberg law will lead to a completely different 
equilibrium. This new equilibrium is chaotic, in a mathematical sense. It is well known that dynamic difference or 
differential equation models, which are characterized by nonlinearity, can present chaotic properties over nontrivial 
ranges of values of their parameters. Chaotic orbit, besides its deterministic behavior, is undistinguishable from a 
random process, or rather, a process perturbed by a random shock. Despite its complexity, in a certain range, the 
model is stable, presenting a rich variety of behavior. The key point is that we do not need to attribute to a random 
walk or statistical model or to a drift as an external force to act upon the population. 
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INTRODUCTION 

A very important result and the starting point for any 

discussion in population genetics, the Hardy-Weinberg 

Law, tells us that in an indefinitely large population, the 

relative frequencies of allelomorphic genes remain 

constant over time, and the genotypic frequencies are 

related to allele frequencies if unaffected by disturbing 

factors, e.g., mutation, migration or selection. The 

stability of the equilibrium, whatever the initial 

combination of the population, was proved by Hardy 

(1908), Weinberg (1908), and Robbins (1918), but that 

does not mean that equilibrium is attained 

instantaneously, but is rather approached 

asymptotically through an infinite number of 

generations (WRIGHT, 1930). 

With this as base, one can incorporate the effects of 

any disturbing factors into the Hardy-Weinberg model, 

and see how these factors bring about genetic change 

in populations, and that has been accomplished 

throughout the years. Starting with the concept of 

genetic drift (WRIGHT, 1930), we have seen how fast 

the stochastic models flourished in the following 

decades. Gillespie (2000) introduced the concept of 

pseudo hichhiking, or genetic draft, which behaves as 

a stochastic force similar to the genetic drift, the 

difference laying in the dependence on recombination 

and selection.  

Evolutionary forces are often divided into two sorts: 

stochastic and deterministic (WRIGHT, 1955, 

GILLESPIE, 2001). Genetic drift is considered to be 

the most important of the stochastic forces in the 

evolution of natural populations (GILLESPIE, 2001). 

That is why Gillespie’s paper considered to what 

extent pseudo hitchhiking led to similar predictions for 

the change in allele frequency. Regarding the 

deterministic forces it was always not appealing, 

mainly due to its simplicity and not very profound 

conclusion as one have with the stochastic models.  

This paper aims at showing that a deterministic model 

of population genetics, following Hardy-Weinberg Law, 
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can generate complex trajectories mimicking the 

stochastic models. If it is so, it becomes too 

complicated to tell one force – deterministic – from the 

other – stochastic.  

The next section shows how deterministic mutation is 

treated in the literature. The following section defines 

the new model. The full mathematical treatment of its 

dynamics is presented afterward. The last section 

discusses the mathematical model and includes some 

numerical examples. 

Process that Change Allelic Frequencies – 

Mutation 

This section is based on Tamarin (2001), Gillespie 

(2004) and Nei (1975).  

Hardy-Weinberg Equilibrium 

In 1908 Hardy and Weinberg discovered a rule that 

relates allelic and genotypic frequencies in a 

population of diploid, sexually reproducing individuals, 

if that population has random mating, large size, no 

mutation or migration, and no selection. The rule has 

three aspects: The allelic frequencies at an autosomal 

locus in a population will not change from one 

generation to the next; The genotypic frequencies are 

determined in a predictable way by the allelic 

frequencies; and, The equilibrium is neutral. In a 

population of individuals segregating the A and a 

alleles at the A locus, each individual will be one of 

three genotypes: AA, Aa or aa. If ( )p f A= and 

( )q f a= , then it is possible to predict the genotypic 

frequencies in the next generation. Thus, 
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Using the above results it is possible to demonstrate 

that the allelic frequencies do not, change generation 

after generation. 

Mutation Pressure 

At this point it is necessary to discuss some of the 

effects of violating, or relaxing, the assumptions of the 

Hardy-Weinberg equilibrium. Here we consider the 

effects of mutation on the model equilibrium. Thus, the 

following steps should be taken in order to solve for 

equilibrium in population genetics models. The steps 

are: Set up an mathematical model; Calculate allelic 

frequency in the next generation; Calculate change in 

allelic frequency between generations; Calculate 

equilibrium condition; and determine the stability of the 

equilibrium. 

Mutation is any process that alters one allele to 

another and thus changing allelic and genotypic 

frequencies. Irreversible mutation of a gene at the rate 

u per generation change frequency q at the 

rate q uq∆ = − . With reverse mutation at rate v the 

change in gene frequency is (1 )q uq v q∆ = − + − . In 

the absence of other pressures, equilibrium is reached 

between the two mutation rates when 0q∆ = , giving 

ˆ
v

q
u v

=
+

. Once the Hardy-Weinberg equilibrium is a 

neutral one, it is necessary to prove if this equilibrium, 

q̂ , is a stable one. Thus, using the previous results, 

we can easily get ˆ( )( )q u v q q∆ = + − , knowing that 

0u >  and 0v > , the sign of q∆ depending only on 

ˆ( )q q− . When ˆq q< , it implies that 0q∆ > , and q 

must rise, and when ˆq q> , it implies that 0q∆ < , 

and, q must decrease.  

Hardy-Weinberg equilibrium with chaotic mutation 

dynamic 

Consider a population of N individuals in which two 

alleles, A and a, exists. Every individual will be one of 
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three genotypes: AA, Aa or aa. If ( )p f A= and 

( )q f a= , and A mutates to a at a rate of u, and a 

mutates back to A at a rate of v, then  

( )

( )

A

N

a

N

P
f A p

P

P
f a q

P

= =

= =

 

If 
t

p and 
t

q are the frequencies of A and a in 

generation t. It is well known that the frequency in 

generation 1t + ,
1t

q + , is given by 

1
(1)

t t t t
q q up vq+ = + −  

The change in allelic frequency between generations, 

1t t
q q q+∆ = − , is 

( ) (2)
t

q u u v q∆ = − +  

If 0q∆ = , we can compute the equilibrium point and 

obtain 

        ˆ
v

q
u v

=
+

 and ˆ
u

p
u v

=
+

  (3) 

Now, using the theory of first-order differential 

equations, it is possible to study the dynamic of the 

model, and one can obtain  

0
ˆ ˆ( )(1 ) (4)

t

t
q q q q u v= + − − −  

and its solution is  

( )

0
ˆ ˆ( ) (5)

t u v

t
q q q q e

− += + −  

where
0

q  is the initial value, and 
t

q shows the behavior 

of 
t

q  over time.  

Equations (1)-(5) shows that the frequency is stable 

along the generations when u and v are fixed. If we 

assume that 0
A

P =  or 0
a

P =  cannot occur, then the 

model should incorporate some kind of inhibiting 

factor,ϕ , since u and v are no longer fixed for they are 

dependent on the population size and on how close 

A
P  and 

a
P  are to 

N
P . In the equations below we 

present a mathematical version of this relationship of 

u and v  with 
A

P , 
a

P  and 
N

P . 
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Now we must rewrite equation (1) in order to capture 

this new dynamic  

1
(8)

t t t t t t
q q u p v q+ = + −  

A little simplification on equation (8) could make things 

easier. The second and third terms can be captured by 

the mutation rates,
t

u and 
t

v , that are not fixed as 

before. So we can rewritten (6), (7) and (8) to get  

, 1 , , ,
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Equations (9) and (10) show the new law of movement 

for calculating the allelic frequency. Since there is an 

obvious analogy between equations (9) and (10), from 

now on we will consider only equation (10). Dividing 

(9) and (10) for 
,N t

P  and making the substitution 

,

t
t

N t

P
X

P
=  we get 

[ ], 1 , 1 (11)a t t a t tX P Xϕ+ = −  

If 
,t t N t

Pα ϕ= , and substituting this variable into 

equation (11), we obtain 

, 1 , ,
1 (12)

a t t a t a t
X X Xα+  = −   

In this form, equation (12) can be recognized as the 

well known the logistic map. The dependence of the 

parameter 
t

α depends on 
,N t

P  shows that mutation 

rates are not constant along the generations. In fact, 
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the mutation rate may change in response to 

environmental changes.  

Mathematical analysis of equation (12) 

It is well known that dynamic difference or differential 

equation models, which are characterized by 

nonlinearity, can present chaotic properties over 

nontrivial ranges of values of their parameters. Chaotic 

orbit, besides its deterministic behavior, is 

undistinguishable from a random process, or rather, a 

process perturbed by a random shock. Despite its 

simplicity, equation (12), which is called the logistic 

map, displays remarkably rich variety of behavior as 

the parameter α  varies. As the parameter leaves its 

stable range the model will move from stability to 

instability. In this region oscillatory behavior persists, 

but the time series generated by it will fail to replicate 

itself perfectly. 

Fixed Points 

Using equation (12) as the law of motion of a discrete 

dynamical system, it is possible to investigate the long-

run behavior of all its possible orbits. But first, it is 

necessary to put forth the concept of fixed point. In a 

linear system, convergent orbits always converge to a 

fixed point. This property holds in general. If a 

continuous function f has a convergent orbit 

, ( ), , ( )
nx f x f xL and L is its limit, then 

( ) 1
( ) lim ( ) lim ( )

n n

x x
f L f f x f x L+

→∞ →∞
= = =  

So that L is a fixed point of f . In words, if the system 

converges to any finite limit, that limit must be a fixed 

point.  

Dynamic behavior  

The equation (9) that is repeated it here for 

convenience  

, 1 , ,
1

a t a t a t
X X Xα+  = −   

Can be rewritten in the following way 

[ ] [ ], 1 , ,
( , ), 0,1 , 0,4a t a t a tX f X Xα α+ = ∈ ∈  

The function f is a unimodal curve in the 

( ), 1 ,
,

a t a t
X X+  plane, since 

,
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∂
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2a t
X = , 

and 
2

2

,
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a t
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X
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∂
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∂
 When 

,

1

2
a t

X = , we have 

4
f

α
= , which shows that the maximum shifts 

upwards when α increases in its interval of definition. 

Equation (9) has two fixed points
,

0
a t

X = , the trivial 

solution, and the other at 
1

( )
α

κ α
α

−
= . 

The main types of dynamics can be classified 

according to the values of the parameterα : 

Case 1: 0 3α< ≤  

In this region 
, 1a t

X + will converge, sometimes 

oscillating ( 2α > ), to the fixed point, ( )κ α , and this 

point is stable. This is shown in Fig 1 in the 

supplementary material.  

Case 2: 3 α ψ< ≤  

As α increases the stable 2-period cycle loses 

stability, especially when it reaches the 3.44949, 

where a new stable 4-period cycle appears. The orbits 

created repeats itself to an infinite sequence of 

bifurcations and period-doubling, (Fig 2 in the 

supplementary material). The accumulation point is the 

Feigenbaum constant, ψ , which is defined as 

1

1

lim x x

x
n n

α α
ψ

α α
−

→∞
+

−
=

−
 

Case 3: 4ψ α< ≤  

The 4-period cycle behavior is stable for some range 

of α until a value is reached at which the 4-period 
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cycle bifurcates, and this will lead to another stable 

cycle, which is called the 8-period cycle, and as 

α continues to increase the orbit of 
,a t

X will bifurcates 

again and again. But it will reach eventually a finite 

value for α , the Feigenbaum constant, ψ , at which 

the limit cycle becomes infinitely long, that never 

repeats itself. Despite all that, the orbit generated by 

this process is not yet considered as chaotic. 

As α increases the system reaches the range chaotic 

behavior. That will take place as soon as α becomes 

greater than ψ , as illustrated by Fig. 3 and 4 (in the 

supplementary material).  

DISCUSSION 

A key property shared by all the mutation models is the 

assumption that the mutation rate is constant, although 

it has been known that mutation rate vary within a 

certain range (BAER, 2008; GILLESPERE, 2004, 

DRAKE, 1998). Evidence has shown that the mutation 

rate is correlated with fitness. Thus, natural selection 

will favor mutation rates, which are low under normal 

conditions but higher under stressful conditions. 

Evidence from E. coli has shed some light on this 

subject, showing that a stress induced mutation rate 

differs consistently with certain ecological 

circumstances (BAER, 2008; BJEDOV et al, 2003). 

The understanding of how natural selection changes 

allele frequencies or how it works when genotypes 

have different fitness is beyond the scope of this 

paper.  

The interaction of natural selection and genetic drift 

has been studied in the literature. The conclusions 

always go to the direction that genetic drift influences 

the fate of rare alleles, even in very large populations. 

In another word, the fate of most advantageous 

mutations is extinction, which leads to the conclusion 

that evolution is essentially a stochastic process that is 

not repeatable or reversible (GILLESPERE, 2004). 

According to equation (12) it is not necessarily true. 

For the value the parameter α will determine the kind 

of trajectory the model present through the 

generations. It is possible to have a non repeatable 

and irreversible trajectory without taking into 

consideration a random shock.  

The natural selection, fitness, can influence the 

trajectory of equation (12) through equation (7). While 

equation (10) was used to model how the environment 

stress will determine the mutation rate. The parameter 

α can be redefined using the original variables of the 

model. With some algebraic manipulation we get 

t
t

t

u

q
α =  

Or 

,

,

(13)
t N t

t

a t

u P

P
α =  

Which is a much more appealing definition for 
t

α . 

Equation (13) shows that the dynamic of the 

population throughout the generations will assume 

different trajectories depending on how the natural 

selection, or fitness, will change the allele frequencies 

from one generation to the next. 
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